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ABSTRACT

This paper reviews exact results which we obtained on Fhe discrete
Frenkel Kontorova (FK) model and its extensions, during the‘past few
years. These models are associated with area preserving twist maps of
the cylinder (or a part of it) onte itself. The theorems obtained for
the FK model thus yields new theorems for the twist maps. We describe
the exact structure of the ground-states which are either commensurate
or incommensurate and assert the existence of elementary discommensura-
tions under certain necessary and sufficient conditions. Necessary
conditions for the trajectories to represent metastable configurations,
which can be chaotic, are given. The existence of a finite Peierl
Nabarro barrier for elementary discommensurations is connected with a
property nf non-integrability of the twist map. We next prove that
the existence of KAM tori corresponds to undefectible incommensurate
ground-states and give a thcorem which asserts that when the phonon
spectrum of an incommensurate ground-state exhibits a finite gap, then
the corresponding trajectory is dense on a Cantor set with zero measure
length. These theorems, wher applied to the initial FK model, allows
one to prove the existence of the transition by "breaking of analyticity"
for the incommersurate structures when the parameter which describes the
discrepancy of the model to the integrable limit varies. These theorems
also allows one Lo chlain & series of rigovous upper bounds for the
stochasticity threriiold of the standard map which for the order 5,
already appraaches at 25% the value which is numerically known. Fionally,
we describe a theovem proving the existence of a devil's stairvcase for
the variation curve of the atomic mean distance versus a chemical poten-
tial, for certain properties of the twist map which are generally

ratinfied.



I. Introductivn. Models description

Up to now, applications of the properties of nonintegrable maps
and particularly the possibility that they have to exhibit a chaotic
behavior, have been mostly devoted to physical systems which are really
dynamical. I{owever, they also have interesting applications for under-
standing static structural properties of condensed matter. The aim of
this paper is to describe some of these applications. Instead to give
a detailed report of our talk (which would be too long), we mostly focus
on the rigorous results which we obtained. The reader can refer to(16)
where the physical applications of this work have been focused at the
expenses of a precise mathematical description which as a counterpart is
given here.

We initially studied the Frenkel Kontorova model(z) (noted here-
after FK model). However, due to difficulties in the publication of
these early works, these results have only been published in parts and
with incomplete proofs in journals of limited audience. We takc the
opportunity of this paper to recall, to clarify and to emphasize some
particular important points which apparently have been ignored or mis-
understood in the literature, but which already gave answers to tertain
presently controversed questions (Inr example on the existence of chao-
tic ground states in the FK model). The exact results which we obtained
on its ground-states and on its metastable states, also turned out to
have important applications for the standard map. We recently improved
and exteaded these results to a larger ¢lass of models corresponding to
twist maps and for which we obtained interesting new theorems. In this
paper, we describe them in the most recently improved form, but we do

not include their proofs which are generally long and complicated,
I R R |



However, we detail some corollaries which have immediate applications
with their prc s when they are simple. The first parts of<the most
important proofs .re submitted to publication (Ref. 6 and 75. The
second part (Ref. 8) is still in preparation.

This study is esseutially analytical and yields only qualitative
results of topological nature. However, explicit rigorous calculations
can be carried out on a particular but pathological model with the
form (1) where V(x) is replaced by a piecewise parabola periodic potern-
tia1(2’3’7). We also performed few numerical calculations mostly for
the illustration of the theory (Fig. 1 and 4). Some recent numerical

(

calculations 14) have also been performed on the transition by breaking
of analyticity in order to explicit critical quantities and critical
exponents.

(1)

Let us describe now, the Frenkel Kontorova model, in its

original version. It corresponds to a chain of elastically coupled

atoms submitted *o a periodic potential

o({u,}) = f[A V@ )W, mus) = ope (e gmu)] (1.a)

the atom 1 is at abhscissa u. The coupling potential W is harmonic
1 2
- = - \
W(ul.+1 ui) 2(ui+1 ui) (1.b)

(The energy unit is chosen such that the coupling constant in (1.b) be

one). The periodic potential V with period 20 is sinusoidal.

1 nu
V("i) = 2(1-(‘05 u-) (1.¢)

A the amplitude of this potential is ar adjustable parameter.  The chain



is submitted to a tensile force p (or a chemical potential) which allows
one to change the distance between neighboring atoms in the; absence of
periodic potential (A=0). The configurations {ui} of model (1) which
have the most physical interest are those which corresponds to the
ground~states for various boundary conditions or with free ends and
those which corresponds to metastable configurations. All these con-

figurations are solutions of the equation

v _ . -
Bu; - (rujyqpmuygt2uy) 4

5%

=0 (2)

but this equation also exhibits many other unphysical solutions (in our
physical context) which correspond to unstable configurations. (Note
that the parameter p disappears when writing equation(2)).

This equation can be recursively solved(z) by iterating the area
preserving two dimensional map Ts which maps the point ﬁi with coor-
dinates (ui’ui-l) onto the point §i+1 with coordinates (ui*],ui). From
cquation (2), we get

~ An "ui
=T (P,) = (2u. + 55 Sin S - ul_ g, ui) (3)

This map can be fold up onto a torus |0,2a[x[0,2a[ by defining
0, = g modulo 2a (4)

Jt is now well-known that such a map exhibits many kinds of trajectories
which are elther chaotic or not. Figures 1 shows some trajectories for
A=0.15 (Fig. 1-a), A = 0.20 (Fig. 1-b) and A = 0.25 (Fig. 1-c). About
1000 iterated points have Leen plotted from each initial point. These

figures cxhibit trajectories which are either rotating on one or several



smooth closed curves or are chaotic. The behavior of two dimensional
area-preserving maps has been intensively studied particularly during
the past few years and we refer for example to the important work of

(9)

Greene on this subject.

By the change of variables

Py T Uiy T Yy (5)

this map becomcz the well-known standard map which have been studied as
a model for certain dynamical systems (for example the motion of an ion
in a plasma)

nb.
- R - At i
(P4108549) = T(p;,8,) = (py+ 57 sin —=, p,,+6.) (6)

This standard map, which maps the cylinder [0,2a[ onto itself, is a
prototype for the twist maps of the annulus onto itself (see Ref. 5)

A twist map is a map §i+ = T(ﬁi) of the annulus onto itself (An annulus

1
is defined as the part of the cylinder (p,6) which is limited by two

circular sections p = p_and p = p,) which satisfies
p o P =Py

D, N P, T (p.,0,)
i+l = F i - ) Bl T § (7)
i+1 8 Ty(p;,0;)

where

1) T1 and T2

derivatives. T is area preserving and invertible,

are differentiaole in p and 6 with continuous

2) T, and T, have period 2 with respect to the variable 6,

3) For any fix~d value of 0, Tz(p,e) is a strictly monotonous

function of p,



4) The two bourdaries of the annulus are invariant by T which also
preserves their orientation.

This standard map Ts in (6) allows one to represent any stationary
configuration of model (1) modulo 2a (which can be either physically
stable or unstable) by a trajectory in the dynamical system with the
discrete time i and the evolution operator Ts' But let us emphasize
again, that our specific problem is not to find the properties of
arbitrary trajectories, but to find those which corresponds to physically
stable configuration. Let us also emphasize that the physical stability
of a configuration must not be confused with the stability in the map of
the associated trajectory.

Although our theory was initially developed for a slightly general-
ized form of model (1), we recently found that tlie method which we used,
can be extended with few changes to a wider class of one dimensional
models with first neighbor interactions. The map associated with these
models by extremalizing their energy, turns out to include the class of
twist maps above defined in (7) but our map T is not necessarily
restricted to an annulus. The energy of this class of model (or varia-

tional form) which contains model (1) as a particular case is

6({u, 1) = f L(u;,quy) (8.a)

vhere L(x,y) is an arbitrary function of the two variables x and y
which have the following vwroperties:

1) L(x,y) is continuous with a lower bound;

2) L(x,y) is diagonally periodic with period 2a that is {or any x

anc y



L(xt2a,y+2a) = L(x,y) (8.b)

<

3) the crossed second derivative of L(x,y) is strictly‘negative

that is there exists a positive constant C such that for any x and y

921

9xdy

(x,y) >C>0 (8.¢)

By setting P, = 8L(ui,ui_1)/3ui, the conjugate variable of us, the
eguation 3¢/8ui = 0 generates an area preserving map (pi+1,6i+‘) =
T(pi,ei) with the same properties as the twist map (7) except that it
maps the cylinder (or a part of it) onto itself and not necessarily an
annulus onto itself.

Our theory(é)

introduces a distinction between the concept of
minimuin energy configuration (m.e. configuration) and the concept of
grourd-states. The reascn for this distinction is that under certain
beundary conditions, for cxample the constraint

1%m ugtuy - = 2a (10)

N-N 2o

the configuration of model (1) which salisfies this condition and which
have Lhe minimum energy is in fact a defect (a soliton in the continuous
limit) and is not usually considered as a ground-state. The set of
minimum energy conligurations is delined as the set of all possible
limits of ground-states of finite systems with arbitrary boundary con-
aition at Uy and ny when N goes to +@ and N7 goes to -».  This set of
m.e. configurations is qulo(lC\. We keep the name ground-st te for m.e.
configurations which are represented by recurent trajectories in the
associated map. (A recurent trajectory returns into any neighborhood

of any point of the trajectory). This definition turns out to correspond



to the usual intuition of a ground-state (see Ref. 6 for more details).
This set is called g and is included inca.

We found the topological structure of the seLsQ_andgwithout any
explicit calculation of m. . configuration. These results are described
in the following section 2. Before the description of these results
let us briefly explain the general ideas which allows one to find a
method which works when some topological and symmetry properties are
satisfied.

1) We note that the setcz is closed 1or the weak topology that is, the
limit of a convergent sequences of m.e. configurations is a m.e. con-
figuration. This property is only a consequence of the fact that the
energy of the model depends continuously on the atomic positions.

2) We note the existence of a group of transformation G~ which trans-
forms a configuration into other configurations with the same energy.
Particularly G{andqa are invariant by G°. This group G~ is defined by

the transformations 8, p wl:".h transforms a configuration {ui} into:
’

g, o({u,}) = {u,, -2pal (12)

n and p are two arbitrary integers. This property is a consequence of

the homogencity of the model (all the atoms play an identical role) and

of the periodicity condition (10.b).

3) Condition (10.c) allows to prove the fundamental lemma which is:
Fundamental lemma  Let {ui} and {vi} be two m.e. configurations.

then the sequence (ui-vi) has al most one node for -®< j < ® (i.e.

one change of sign). If the Lwo configurations {ui} and {vi} are

asymptotic for i *» *o, the point at infinity must be considered as a

node .
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Considering a m.e. configuration {un}, the group G~ allows one to
construct an infinite number of m.e. configurations from which the limits
are also m.e. configuration. These m.e. configurations can be compared
one with eaclL other with the abovc fundamental lemma which yields in-
equalities. By combining these methods in a sequence of proofs which
d’(6)

is quite long and complicate one finds the exact topologice struc-

ture of the setQ and% now described.

2. Topological Structure of the set of m.e. configurations and of

ground-state in the extended FK model (proofs in Ref. 6.b).

We first found
~ Theorem 1. For any m.e. configuration hnCQ, the limit (11) is defined
and does not depend on the way by which (N-N") goes to infinity.
Conversely, for any value of £, there exists a m.e. configuration

{ui} ilelsuch that the limit (11) be 2.

|

The corresponding trajectory in the twist map have the winding
number %; which is its mean number of revolutions around the cylinder
per iteration ot the map. Because of this theorem, we can split the

set Q(andg) into subsets QQ (andgg) which are defined as the con-

23

Q :%QE and 3 =Li§2 (13)

figurations in Cl(andg?) with winding number L and such that:

with for any £ # 27

QEHQE' = ¢ and ggﬂ 52- =f (14)

The two following theorems describe the structure of Q,Q and ?2, first for

. . L .
7a an irrational number and next for 72 @ rational number.
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Theorem 2. Let %; be an irrationmal number then:
1) The setC{Q of m.e. configurations of the above defined extended
”K models, is non-void and is totally ordered that is if {ui} # {vi}

both belongs to G& then for all n either

u <v (15.a)

or
u >v (15.b)

2) The whole set.i‘;2 of ground-states configurations of model (8)
(gP.CQE) is nonvoid and can be parametrized witb one or two hull func-
tions f(x) which are strictly increasing. a) When f(x) is ~ontinuous,

a unique function allows one to parametrize the full set gr b) When

s
. , . . + -
f(x) is ”'scontinuous, two determinations f (x) and f (x) are necessary
+ - .
to parametrize ;z. f (x) and f (x) correspond the right continuous and

the left continuous determination of the same discontinuous, strictly

increasing function. In other words, we have:

lim £ (x+8) = £ (x) (16.a)
6~0

6>0

and

lim f+(x+6) £ (x) (16.b)

6+0
6<0
+ . . . L . .
c) When £ (x) is discontinuous at xo, it is also discontinuous
al the points x04h2+2ka where h and k are arbitrary integers. As a

b
result, the set of discontinuity points of f (x) is dense on the real

axis.
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d) Functions gt(x) = ft(x)-x are periodic with the peiriod 2a of
L(x,y).

e) Finally, for any ground-state which belongs to Sa,;there exists
a phase a and a determination of f: £ or £ when f is discontinuous

(‘he determination is unique when f is continuous) such that

+ +
u = f~(n2+a) = nlta+g (nk+a) (17)

Conversely, any corfiguraticn {un} defined by (17) for an arbitrary
rhase and one of the two determinations f+ or f when f is discontinuous,
is a ground state in gﬂ'
This hull functiun f{x) obviously depends on %;. A configuration
{un} as defined by (17) is called incommensurate. It describes a crystal
structure of atoms at distance £ which is modulated by the function g
with the period 2a incommensurate with £. Let us now describe the
structure of'Gé and 3& for %3 rational.
Theorem 3. Let %; = E be a rational number. (r and s are two irreducible
integers). Then
1) The ﬂ(—‘tgz is nonvoid and is totally ordered. (i.e. for {uj] #
{vij irnj{n then for all n we have either (15.a) or (lb.b).)

2) For any {u]] in g, we have for ali n

u = u + 2ra 20
n+s n {20

(This ground-state is called conmensurate. Tt has a unit cell of s
atoms with Tength 2ra.)

3) When the set 92 is conlinuous, which means that it can be
parametrized by continuous functions {un(ﬂ)} wvhere o is a continuous

parameter which varies from -o to +» (for example uo), then u“(u) is a
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continuous strictly increasing function of o and we have

C2£ =};2 : (21)

4) h%er.§;; is a discontinunous set, it is closed and there exists

. . . - L »

for each discontinuity a couple of ground-states {vn] and {\"n] in 52
such that there exists no ground-states injF;, {vn} which satisfies for

all n

vio<v <y (22

vi<u <v (23.a)
n n n
and
. + N
lim (v.~u ) =0 (23.b)
n2+m non
. Loy = 23,
lim (un v“) 0 (23.¢)

n+-m

Such a configuration {u"} is called an "advanced elementary discommen-
suration". There also exists m.e. configurations [u“} in G& called

"delayed elementary discommensuration” such that for all n
<u <vw (24.a)
and

Lim (v:-un) =0 (24.1)

{} =00

i
[=]

(24.¢)

lim (u -v-) =
1100 non
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5) The union of‘?; and of the set of advanced elementary discom-

mensurations inC?g is cal]edCQ;. Identically, the union ofjr with the

£
set of delayed elementary discomacnsurations is calledGQL. ThenCQZ and
CQE are totally ordered sets (with the definition given in (15)) and we

have

QQZQ;UQE (25.a)

§Q=g;(}%£ (25.b)

This theorem proves that when the boundary condition (11) is satisfied
with %; a rational number, then the ground-state is indeed commensurate
and satisfies (20). It can he obtained by finding the absolute winimum
of the energy per unit cell with this condition (20). There generally
exists s minima (modula 2a) (r and s are irreducible iniegers) because
of the invariance ¢f the energy per unit cell under the s cyciic permu=
tations {un} + {u“+p} po=1, 2, ... s. It may also exist ks minima (for
example k = 2 is possible if the mod»1 has a symmetry by reflexion) or
also a continuum of minima but Lhese two situations are exceptional.

[n this theorem, we distinguish two different situations. The
situat ion where yﬂ is a continuous set is found for example in the
case of integrable maps. It corresponds Lo tine absence of locking
of the commensurate confipuraticas by the lattice and can be considered
as exceptional.  The situation, where ?R is discontinuous turns oul
to be the most generai case.  Then, the lattice locking does not varish,
This is a necessary and sulficient condition o have discommensurat ions

(sce Fig., 2). These ones ave callod clementary because they correspond

to the winimum energy of the system for certain boundary conditions
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similar to (10). They were already known as solitons in continuous
models for incommensurate structures.(lo) Thus, we also pr@ve there
existence (under certain conditions) in a discrete model for any com-
mensurability ratio r/s.

Since any twist map (7) corresponds to a variational form (8) for
some choice of L(x,y), thece theorems predicts the existence of certain
trajectories in the twist map with particular properties as a corollary
of theorems 1, 2 and 3:

Let Wy be the winding number of T (definec¢ by (7)) on the invariant
circle p = Py and Wy, its winding number on tha invariant circle p = Py

In order to fix the ideas, we assume that w, <w Then for any w, <w<

1
w,, there exists a trajectory with winding number w. If w is an irration-
al number, this trajectory is quasi-periodic {(in an extended seuse

Lecause funclion £ in (17) is not necessarily continuous) and is dense
cither on a continuous cvlosed loop or on a Cantor set which is paramet-
rized by the function ft in (17). (This result has also been recently

(24),

proved by Mather. 1f w is raticnal number r/s, it is a periodic cycle
[Fi] i=1, ... s with period s (Ts(Fi) = Fi)' Wien the st of periodic
cycles with period s of T does not form a clused continuous loop around

the cylinder, (unlike certain integrable twist maps) there exists initial
points h which by applying the transformations T are asymptotic to one

of the points Fj of the periodic cycle for n*=® and to another point FJ

of the same periodic cycle for nr*4»,  (These points Fj and Fj are in
consecutive order with the order relation given in (23))  Such points

are called in mathematics, hetevoclinic pointa,.  This point h belongs to
the intersection of two cuives (see Fig., 3): the dilaring sheet WI of

Fi which is the ket of points which converge to Fi by iterating the
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transformation T° and the contracting sheet W; of Fj vhich is the set of
points which ronverge to Fj by T%. Let us note Lhat the po%nt Fi must

be linearly unstable with respect to T® (that is the Jacohian matrix of
TS at Fi has a real eigenvalue with modulus larger than one) in order to
be allowed to apply a theorem which predicts the existence of a dilating
sheet w: (Ref. 11). It may happen, altbk-ugh Fi is unstable with respect
te the operator $s’ that its Jacobian matrix has an eigenvalue with
modulus one. Then, a proof for the existence of a continuvous dilating or

contracting sheet is necessary. (We have not yet performed this proof).

3. Met:stable configurations and their corresponding trajectories in
the tvist map

Theorems 1, 2 and 3 definitely prove that although the equations
2)¢/E)ui = 0 exhibits many chaotic solutions, the ground-state of moded
(8) is never chaotic, whatever is the boundary condition (11), and
particularly it has no entvopy. Nevertheless, as we already pointed
several years ago in Ref. 2 (for the simpler model (1)) model (8) may
exhibit for certain boundary conditions (11) metastable confipurations
which are aotic but have more cnergy per atom than the real pround-
states.  The ground=state which is obtained tor the same houndary con-
ditions is called defectible, while it it s the unique metastable con-
tiguration, it is called undelectible,

I this section, we investigate some of the necessary properties
of the trajectories in the twist wap which correspond to metastable
configurations,  We also investipate the Tineav stability of the tra-
Jectovies dn the map aied shows that this concept of stability ix not

connected to the physical stabilbity of the corvrvenponding contipurat jon
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although these two concepts have sometimes heen confused in the

~

literature. Let {pi,ui} be a trajectory of the twist map T. The

corresponding configuration {ui} is a solution of the equation B¢/Bun =

0

oL oL _
su_ Cnertn) ¥y (nrtpey) 20 (26)

By dofinition, the physical stability (called metastability) of this
conf guration {un} means that the second order expansion of the energy

(8) with respect to small atomic displacements {6n}

2 2
_ 1 9 L(un+1'un) 9 L(un’un-]) 2
A T 8 R A
Bun aun '
(27)
2
. s 0 L(un+],gn) . .
ou Ju ntl 'n
ntl "'n

is o positive quadratic form in {Gn]. This condition is equivalent to
the positivity of the phonon frequencies squares obtained from the time

Founrier transform of the small motion equations:

2
q (
25 _06p d L\u"+],un)
W, 96 Du . du n+l
n ntl n
(28)
2 nd il
) L(u“,u“_l) H] L(”nil’"n) b L(u“,uu_l)
G 1 , + 16
Ju Ju n-1 w2 o 2 n
n n-l Ju du
n n

(the atoms have a untt wans and 6" also denoters the time Fourder Cpank-

form of 61\(l )).
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For each value of w, this equation can be recursively solved from

the knowledge of 60 and 6].

function of the vector (& ,6 ).
n’ n-1

variables.

Then the vector (6

n+1’6n) is a‘linear

It is convenient to set the new

BZL(U ,u 3 82L(u ,u )
- n -1 n’ n-1
n o= - o 8 o -8 (29)
n 2 n A du n-1
Bun n n-1

in order to find a linear relation

H“+]

6n+]

whrre j(p“,n“) is the Jacobian matrix of the twist map T at (p

= (j(pn.un) - w? E(pn,un))

nn\

6, |

(30.4a)

,1 ) and
n'n

azh(u u )

n#l n 0
Ju
n
(30.h)
v -1
R(p“,n“) 2
] L(n“4l,n“)/du“‘|0u“
Q0 1

When w = 0, kqg.

Jacobian matrices:

H Y o,u
n(I o' o’

J(Pn‘“n) J(Pn-l‘”n~l)

(B) to be solved, only needs to perform the product of

Tp yn ) (3
Q Q

Otherwise, the behavior of H” for n poing to ntinity just determines

the Lyapouncv exponent y of this trajectory by the definition
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Yy = lim = 2n ||H -ﬁn|| (32)

When y is zero, the trajectory {pn,un} is called linearly stable.
Because this matrix product does not diverge (or slowly diverges) we
can prove(s) that the zero frequency belongs to Lhe phonon spectrum
given by Eq. (28).

When y is not zero, the trajectory (pn,un] is unstable with
respect to the initial coaditions. Theu, the zero firequency may not
belong to the phonon spectrum, but if it does belong, the corresponding
cigenstotes in the neighborhood of the zero frequency are necessarily
exponentially localized.

As a result. onc seces that the linear stability of the trajectory
{pn,un} only gives informations on the spectrum of the small motion
cquation at the frequency zero, but no informations on the physical
stability of the corresponding configurations. Indeed, our previous
papers exhibit examples of trajectories which are either linecarly stable
or unstable in the twist map and for which the corresponding configur-
ations are either stable or unstable or vice-versa (see for example Ref.
21). However, one can use the recursive relation (30) in order to find
a necessary condition for the physical stability of the stationary
configurations uatistying (26). Because of the condition {(8.¢) the off
diagoual terms of the Jacebi matrix (A Jacobi matrix is a symmetric
tridiagonal matrix) defined by the Eq. (28) or by the quadratic form
(27), arc all negative. Then, it can be pruvvd(s) that
Theorem 4. A trajectory in a two-dimensional map (associated to a one-
dimensional model with first neighbour interactions) corresponds to a

metastable contiguration if and only if, any sequence 6“ (-» < n < +=)
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generated from any arbitrary initial conditicn (no,éo) by the product
along this trajectory of the Jacobian matrices (3)), has at most one
change of sign. .

Wote that this theorem also applies to model (8) when the period-
icity condition (8.b) is dropped. The map is then on the two dimensional
plane and not on the cylinder. The proof of this theorem is an applica-
tion of the theory of Jacobi matrices. (See for example Ref. 13). (A
w21l -known corollary of this theory, asserts that the eigenenergies of a
one dimensional Schroedinger eguation are in the same order than the
number of nodes of the corresponding eigenstates.) Thic theorem have
straightforward applications for predicting the physical unstability of
the coufigurations corresponding to certain trajectories. We have with
the same hypothesis as in theorem 4.

Corollary of thecorem 4. The configurations corresponding

1) To a periodic cycle which is elliptic,

2) To a periodic cycle which is hyperbolic (or parabolic) with

reflexion; and

3) To trajectoriecs dense on one or several differentiable tori

(KAM tori) «hich are homotopic to zero are physically unstable.
(A more complicated proof of this corollary was arrcady given in Ref, 27,
appendix A and B. This result was also given in Ref. 2.) For its proof,
we first exemine the case of a periodic cycle of the twist map with

period s. We consider the sequence of matrices B in (31) which is

ks
gk - . L )

cqual to Hs(po’“u)' When the periodic cycle is elliptic, the matrix

Hs is by delinition equivalent to a rotation (in noworthogonal axis),

then the vector (nkx'ﬁks) is rotating on an ellipse avound the origin.

Therefore, the sequence 6ks (and also 6“) have infinitely many changes
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of sign which by thecorem 4 proves the first assertion of the corollary.
When the pcriodic cycle is hyperbolic with reflexion, by definition,
the matrix ﬁs ;ias two real negative eigenvalues with produc; 1. If
(no,éo) is chosen to be an eigenvector of ﬁs’ the signs of bks change
for each consecutive k, because the corrrsponding eigenvalue is negative.
The sequence éks has then infinitely many changes of sign which proves
the second assertion of the corollary.

When the trajectory {pn,un} is rotating and dense on a set of s
differentiable tori (KAM tori) which are lLomutopic to sero (which mean-
that they can be shrunk continuously on the manifold of the map), the

configuration {un} can be parametrized with s periodic differentiable

ifunctions By» 8y - B with period 2n

Ustp gp(k8+d) (33)

where o is arbitrary phzse and 0 is the average of the angle ol rotation
of T° on cach torus which is incommensurate with 2m. By inserting (33)
in (26) and by differeutiating with respect to the phase a, 1t comes out

that

6ks+p = gp(k0+d)

is o solution of Eq. (28} for w = G (This sequence (34) is also geaer-
aled from 60 and 6] by a product of Jacobian matrices). Since the
derivative of any periodic function has at most two changes of sign per
period, and because gﬁ is irrational, the sequence generated by (34)
hos infinitely many changes of sign.  The third assertion of the corol-

lary is thus proved by theorem 4.
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There often exists KAM tori of the twist map which are not homo-
topic to zero (they go around the cylinder), then the parametrization

of the trajectory on this torus takes a form different from (34), which

is (as in (17))

u = nd + o + g(ni+a) (35)

where g is a differentiable function with period 2a. The corresponding

configuration I ‘~ally stable when
6[’1 =1+ g'l‘x.»"'d) (36)

is always positive. We will cee in the following section that this
condition is always satisfied for such a KAM torus.

As a resul:, the metastable cornfigurations of model (8) are repre-
scnted by trajectories which does not satisfy the condition of the
corollary of theory 4 and thus can be either

1) lyperbolic or parabolic periodic cycles without reflexion, or

2) Dense on a KAM torus which not homotopic to zero, or

3) Imbedded in the chaotic region (however, this condition does
not imply that they are chaotic).

We have examples for these three cases. However, these conditions
are not sufficient to have metastable configurations. Using theorem 4,
it is particularly casy to check numevically the physical stability of
the configuration corresponding to a trajectory. It sulfices to perform
the Jacobian matrix product (31) along a trajectory which is obtained
by iterating vhe map T. Then we check the changes of sign of an arbi-

(14)

trary sequence 6“. ALl omr numerical experimeuts for a chaotic

trajectory have shown thal any scquence 6" exhibit a great density of
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change of sign. As a result all the observed trajectories which are
chaotic in the map correspond to physically unstable confighrations.
This results confirms the early observation of Shilling and;Thomas.(IS)
But this numerical expcriment does not prove that chaotic configuration
which are physically stable, does not exist. (In fact, we can prove
rigorously their existence in model (1) for A large enough.) It only
suggests that the chaotic metastable configurations are represented by

a set of trajectories which have zero measure in the map, and thus are
numerically unaccessible because of the limited accuracy of the computer.
By contrast, the KAM tori which are nonhomotopic to zero, (when they
exist) have a finite measure and are shown to correspond to undefectible
ground-states (see the following section 4). We did not prove this
conjecture but Ref. 16 gives some otlier physical argumentc which support
this ¢ssumption.

Cousequently, the numerical calculations of the chaotic metastable
configurations, are not reliable when they are simply genevated by map
iterations. In crder to avoid these map problems in the chaotic region,
ve obtained the metastable configurations by a variational method.(la)

Integrating the set of equations

du.
i

99
= - Y% 37
ds Jdu, (37)

i
with respect to the variable s, yields a solution {ui(s)} which, for any
. ' . - . . » m\ . .
initial configuration {ui(O)}, converges to a limit {ul.J which is
necessarily a metastable configuration. A special choice of the initial
conditions which is given by theorem 1 in Ref. 6-a or 4, or theorem 2 in

Ref. 6-b (but a symmetry hypothesis is also required to have this
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theorem) yields a limit which is a gronnd-state. (The solutions shown

in Fig. 1 of Ref. 4 were calculated by this way). It seems that the
problem of studying the physical stability of the configuraéions gener-
ated by map iterations, has nct heen carefully considered in some of the
recent publications on this subject (see for example Ref. 18 and 19). 1In

(19) |,

the second reference is particularly obvious, in virtue of the
corollary of theorem 4 that the configurations which are represented by
KAM tori homotopic to zero, cannot be ground-states because they are

physically unstable. (See also Ref. 16 and 20 {or a more detailed

comment of these references).

4. Genera. theorems on the transition by breaking of analyticity and
the Peierls Nabarro barrier
We turn back to the study of the ground-states which have been done
in section 2. Theorem 2 considered two situations for the incommen-
surate giound-states of model (8). Tn the first situation, the hull
function is continuous (and generally analytical in analytical models
because of the KAM theorem). 1In the second situvation, the hull func-
tion becomes discontinuous on a dense set of points. In model (1),
the variation of the parameter A allows onc to get a transition from
the first situation to the second one. We called this transition:

(2)

transition by breoaking of analylicity. We noted that this transi-
tion corresponds to the occurrence of a lattice locking on the incom=
mensurate ground-states that is in other words the occurrence of a
finite Peierls Nabarro barrier (noted hercalter PN barrier) which must
be passed through for translating continuously the incommensurate

ground-state. In this section, we describe some of the exact results

which we obtained on the PN barrier and the transition by breaking of



analyticity, The application of these r~sults to the standard map
allows one to easily obtain bounds for the stochasticity threshold.

Let us first examine the case for which %; is a rational number
and 5& is a discontinuous set (thecrem 3).

It is proven that it is impossible to continuously slide the corres-
ponding commensurate ground-states without passing energy barriers. We

(8)

also recently proved that there uecessarily exists another stationary
commensurate configuration {vn} which just corresponds to the top in
energy of the continuous paths corresponding to the translation of the
commensurate ground-state (by keeping it commensurate) which pass the
lowest possible barrier for the energy per unit cell. The periodic
cycles of the twist wmap corresponding to the commensurate ground-state
{un} (which are hyperbolic or exceptionally parabolic without reflexion)
and the periodic cycle corrcsponding to this commensurate configuration
{vn} (which are either 21liptic, or hyperbolic or parabolic with reflex-
ion in both cases) are those which have been considered by Greene(g)
for studying the stochasticity threshold of the KAM tori in the standarc
map. When‘gz is discontinuous, we know that there exists elementary
advanced and delayed discemmensuraticas. Let {un} be for example an
advanced discommensuration and {v:} and {v;} the two commensurate ground-
states with the properties described in (23). The configuration

{v -2ra} is also an advanced discommensuration which satisfies the

n+s
same conditions (23). 1t corresponds to the discommensuration {vn}
translated by =8 lattice spacings or equivalently by a unit cell of the
commensurate ground-state. To defined the Peierls Nibarro barrier of

this discommensuration, we consider a continuous path f?t) = {wn(t)}

such that
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g (o)

{w (00} = {u } (38.a)

and

14¢))

{wn(l)} = {uns-Zra} (38.b)

It joins the two translated configurations the energy difference (which

is proved to be finite)

E(E(t)) = sup o({w (t)} - 6({u_}) (39)
t

is the energy barrier which is passed through for the translation of
this discommensurzi.ion along the path e(t). The PN barrier of the

discommensuration {vn} is defined as

Epy{lv D) = é?f) E(B(t)) (40)
t

wiiich is the lowest encrgy barrier which must be passed for a continuous
translation of the discommensuration.

We pointed in section 2 that an advanced discommensuration is
repreisented by the trajectory of an heteroclinic peint h which belong
to the intersection of the dilating sheet wh of the point ]";, (which
is the 1aitial point of the trajectory corresponding e {v;}) and to
the contracting sheet W of the point F? corresponding to {v:} (F; and
F; are fixed points for the twist map). Then ve preve

Theorem 5 The Peierls Nabarro barrier of an elementary discommensura-

. - . Ly s + -
tion vanishes if and only if the Jdilating sheet W of Fi and the con-

- + . . -
tracting sheat W of Fi merge into a uwnique continuous curve which joins

+ + - .
F.i to Fj. (The merged curve which correspond both to W oand W, is

called a separatrix.)
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It is the sitnation which occurs in integrable maps. Thus this
theorem proves that if the PN barrier does rot vanish, the @ap cannot be
integrable. However, we have not yet completely elucidated the nature
of the intersection of W and W when this PN barrier does not vanish.
We expect that the intersection of W and W is always transverse or in
other words that the curve W+ and W are not tangen. at their intersec-
tion.

Now, we turn back to the case of the incommensurate ground-states.
We can prove several theorems. The two first ones deal with the case
for which there exists in the twist map an invariant continuous and
closed curve FR wnich is nonhomotopic to zero and on which the twist
map is conjugate to a rotation with winding number %E' In other words,

a trajectory {pn,un} on this curve I’y can be parametrized by a continuous

hull function fk(h) such that for all n

= +
u fk(nR a) (41)
wilh fk(x)-x periodic with period 2a (o is some arbitrary phase) then

(4,8)

woe proved the following theorem
Theerem 6 Let us assume the existence of an invariant continuous curve
"IQ on which the twist map is conjugate to a rotation with winding

number ia' then this set FQ ig identical to the set of trajectories

representing the ground-state of z (This theorem also applies when

;n is rational).
Particularly, this cure I') can he a KAM torus with an irrational

£

winding number When this KAM torns oxistk, it necessarily represents

2a°
the set of grnnnd-slnlr-gay Since we know that when KAM tori exists,

they have a finite measure on the cylinder, most of them (that is with
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probability 1 can be approached by sequences of KAM tori with winding
numbers Qj/2a such that Ei goes to £ either with Bi > R or Ei < £. Let
us call these tori "true'" KAM tori. Most KAM tori are "true'". Then, we

..ve the theorem.

‘e vem 7 When the set of incommensurate ground-state §; is repre-
sented by a "true' KAM torus FR, then the incommensurate ground-states
of'ga are undefectible (by definition a ground-state is called undefect-
ible, when, apart a phase shift, it is the only metustable configura-
tion of the systamm with the same boundary conditions (11)).

In the situations, considered by thecorem 6 and 7, the PN barrier
which corresponds to the translation of the incommensurate structure is
zero. Then the gap in the phonon spectrum of the incommensurate ground-
state {un} given by Eq. (28) is proven to varash. (The gap is the
smallest phonon frequency given by 28).  Conversely a finite PN barrier
does not imply a finit gap although generally they are both finite (or
both zero). However when the gap is finite, we obtained the following

, . : (8)
theorem which have a quite complicated proof,
Theorem 8 Let {u“} be an incommensurate ground=state of model (8).
Let us assume that the gap in frequency of the small motion Egq. (28)
be strictly positive. Then, the hull function | describing the incom-
mensurate ground=state is discrete (sce theorem 2). In other words,
+ : .
17(x) ~an be written as a sum of step lunctions.
4 .. ] ,
{"(x) = 2 lj Y (x-xi) (42)
i
where fi i the amplitode of the step tonction located at x: (By

4 4 1
definition Y7(x) =0 for x ~ 0, Y (x) = | for x »* 0 and Y (0) = 1
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Y (0) = 0). Then, the Lyapounov exponent Y given by (32) for this

incommensurate ground-state is strictly positive.

For reasonably difierentiable models 8, we conjectured in Ref. (6-a)
that the hull function f of an incommersurate ground-state should be
either

1) absolutely continuous that is f(x) is differentiable almost
cveryvwhere

X

) = £x) = [

f(&)dg (43)
)

or 2) singular continuous (f(x) is continuous with a zero derivative
almost everywhere) or 3) discrele (f(x) is discontinuous and can be
written with the form (42)).

We have not rigorvously proven this conjecture but we have shown in
Ref. 4 that model (1) exhibits situations for which the hull function f
is cither analytical or discrete,  The following section b reports these
prools with more detaiis which yields incidently a series of exact
upper bounds for the transition by hreaking of analyticity or equivas-

lently for the stochasticity threshold of the standard map.

H.o  Exictence proof aud Exact bounds for the transition by heaking of
malyticity in the standard map

In the standarvd map (6) associated with model (1), the Kolmogorov

Arnold Moser lhvurvm(J'ZJ) predicts that for almost any irvational 2y

P

there exists AZ(P) such that for |A] = Az(ﬂ), there exists an o invariant

torus on which the map is conjugate to a rvotation with winding number

£

a" Then applying theorem 6 yields that the trajectories of this KAM

torns represent the ground-states of 3& and that their hull function is
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differentiable. Conversely, when A becomes large enough the intuitive
image of the problem, suggests that the atoms locate in the bottoms of
the periodic potential and thus that the function f becomes discrete.

This hull function satisfies the functional equation
= _ A .
F(x) = 1(x*t2) + f(x-2) - 2f(x) = 5a 51n(5 f£(x)) (44)

which is obtained by inserting (17) in (21). Because of the periodicity
property of this model we can restrict our study to the case 0 < £ < 2a.

Since f(x) is monotonous increasing it comes out that for any X
f(x+2-2a) < f(x) < f(x+2) (45.4)
These inequalities (45) in (44) yields
[F(x)| < 2a (45.Dh)

As a result, when

> A (46)

Fg. (44) and inequality (45.0) shows that the hull function xtg(x) =

{(x) cannot take any value (2011)/a where nois an integer.  Consequently

f(x) must be discontinuous and becanse ol theorem 6 there exist no

invariant continnous curves which are nonhomotepic to zero on which the

standard map i conjugate Lo a rotation. As o result, there exists no

KAM tori for any winding number . Then inequality (46) gives a rigorouy
o

upper bound for the stochasticity threshold A for the standard map which
v ¢

. 9 . Co ,
have been caleulated by (ll‘('(‘ll(‘( ) and which is in our units
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N 232 _
A # 0.9716 x = — = Sup A _(2) (47)
c 2 c
n £ .
In fact this bound can be improved by only consilering the positivity of
the quadratic form (27)

2
_ 1 An’ n 2 _
5 = ) i[(z # 27y cos | u)) 62 - 26 6 ] (48)

ntl n
for any ground state {un}. Assuming that the hull function f(x) be

continuous, it is possible to choose the phase o such that

u = f(a) = a (49)

[¢]

(where we expect that the discontinuity of  should first appear) be on
the top of the periodic potential. Next, we prove that in certain range
of A, all stationary configuration {u“} with u_ =, arc such that their
quadratic form (48) is not positive. No ground-state can exist with a
continuous hull function whatever is the atomic mean distance and con-

sequently no KAM torus nonhomotopic to zero can exist. For this proef we set
n, = X (50.a)
The stationary Eq. (2) yields

: n
U o 2a-u o, ou, T o2x-a 4 }n sin (0 x) , u ., = 2a - u

-1 2 2n Q -2 2 (50)
For convenience, we also set

2
A2 - A"z (51.a)

2a
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2
X =2+ cos Xy (51.b)
2 a .
2a ‘
Y=2 - §EE cos I (2x + An sin & x) (51.¢)
2a a 2a a */ ’
First, we consider the minor of order 1, A, = A. When it is necgative,

1

the quadratic form (48) cannot be positive. Feor

2 A
A > 5%- > A (52)
n

A is negative and Llhere exist no KAM tori. Second, when A < lmz/rr2 we

consider the minor of order 2

A -1
A2 = | \= AX -1 (53.a)

when A« Auz/nz. It is smaller for any x than

. . 2
DY LW A [ an?
Z = 2 Z 4 2 - l - 3 = 2‘
24 2a P

Consequently AZ is always negative when
2 _ 2 A
o > ' > N,
) A ) A (h3.h)

When this condition is satisfied, there also exists no KAM tori which are
nonhomotopic to zeroo A thivd order hound is obhtained by considering
the minor of order 3

X -1 0

A, = -1 A -1 =~ X(AX-2) (h4.a)
0o -1l X
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which 1s negative for any x when

432 232 ~

o> A > Y2 25 (54.b)
n2 n2 c

This incquality improves the upper bounds (46), (52) and (53.a) for

/N
the stochasticity threshold Ac. By considering higher order minors of
the quadratic form, we obtain better bounds for AC. For example, we

considered the order five:

Y -1 0 0 0
-1 X -1 0 0
AS = 0 -1 A -1 0 = (XY-1)(AXY-2Y-A) (55.a)
0 0 -1 X -1
0 0 0 -1 Y

In order to avoid cumbersome calceulations, which in principle arce poss-
ible, we only checked numericaliy the sign of (AXY-2Y-A) for 0 < x < 'n
with A, X, Y given by (51). Then, we found that for

5 Anz Yo . A or
NV , 7 1.230 2 0.005 > A (55.h)

2a
(ALY=2Y-A) 15 negative lor any x.  As a result, either A5 or (XY-1)
(which also is a minor of the quadratic form (48) is negative. Conse-
quently when (55.0) ix satisticd, theve exists no KAM tori nonhomotopic
to zero which still improves the upper bound of A(‘. Note that this
bound 1.230 4 0.00% is now only 25% above the value (47) calculated by
Greene and that thisx resonlt s a strict bound obtained with a very short
numerical calculation,  (Note that J, Mather also obtained the bound 4/3

(24))

with o method which is apparently ditferent. We conjecture that the

sequence ol bounds obtained by writing the positivity for u, oA of the
8
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sequence of minors A_ which follows A, A,, 8., (& ) and A, converge to
n 1’ “ 3 4 5
the exact value of Ac but we have not checked numerically this assertion.
Let us turn back to the study of the functional Eq. (44). We
reproduce here, for the model (1) the procf of Ref. 4 (which we hope mcre
clear) which shows that for A large enough the hu’l function { becomes

discrete. When {(46) is satisfied, we have

sin = f(x)‘ <5 (56)

which implies that for any x there exists an integer n such that

= « < 4 < + . ' d
fo + na < f(x) < fo na (57.a)
with
2
_a L ba .
ﬂ) = Arcsin AT (H7.hH)

We now write that the diagonal terms of the quadeatic form (4R) s

positive which yields anothey inequality for all x

2
- Ad, < con | {(x) (8)
2 a
An

Otherwise, inegquality (h7.a) for noodd tmplics by using (h7.b)

I\
hal
ros :: t(x) © cos T: (l'nnl.'l) - (l - ():l:) ) ("9.a)

When
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2
A > -"«3— Jio+ (59.b)
nt

Inequalities (58) and (57.a) are incompatible for n odd, thus the
integer n which appears in (57.a) must be even. As a result, when (59.b)

is satisfied, we obtain for all x

2
42
n n . _ _{ 4a
cos = f(x) > cos 2 ‘o © 1 ( ——) >0 (59.¢)

Now, we can apply theorem (8) for provirg that function f is discrete
by chiecking that (59.c) implies that the gap of the phonon spectrum is
larger or equal to {1 - (4a /)\)2 and thus strictly positive. But, a
direct proof is also quite simple. For that, we prove that the con-
tinuous part Fc(x) of F(x) in (44) 1s a ronstant by proving that it is
both periodic and monotonous increasing.

Fc(x) is periodic because it is the variation hc(X+2) - hc(X) from
x to (x*+2) of the continuous part of the periodic function h(x) = {(x) -
f(x-2) = £ + g(x) - g(x=-2). (Note however that the contintuous part of a
perviodic function is not necessarily periodic).

Fr(x) {4 monotonous increasing becavse in the Last member of (44),
1} t(x) s monotonous increasing 2) sin (1/a (X)) is strictly increasing
in the vicinity ol ecach value taken by [ (x) because ol the inequality
(Hh9.¢).  As oo result, £(x) obtained from F(x) by (44) is also discrete

The vresnlts described in this section vigovously prove the exis-
tence of a breaking of analyticity in the standard mop although we have
not proved that it exactly ocours at a weil dv!invd hv' Anyway we ob-

A 1%

tained explicit bounds of A(_. This transition numerically found wel!

defined on the Figs., 4 which show the trajectories corvesponding to the
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ground states for 2/2a = 441/997 (which is practically an irrational
number) and for A = 0.167, A = 0.20 and A = 0.212. (These ground-states
have not been calculated by iterating the standard map beca;se, as we
know, it is an unstahle process for A > Ac(ﬂ) but by using the gradient

method described by Eq. (37)).

6. Final Remarks on the devil's staircase and the order without
periodicity
The above theorems have an application for the theory of the
devil's staircase which we.briefly describe now.
Let us con<ider model (8) to which we add a tensile force p (or

chemical potential)

O L (60)

(As for model (1), the addition of this tensile force does not chanpe
the twist map associated to this model). The ends of the chain are let
free for finding the ground-state of this model, we first consider the
average energy per atom (for p=0)

P(2) = lim ! g L(u u,) (61)

N»an =1 RS L

for the ground-state(s) with atomic mean distance £ (which we proved to
be a well defined function) and we minimize the energy per atom y(2)-pg.
Then, we prove that the atomic mean distance £ varies as a devil's stair-
cane versus g We have
Theorem 9 The variation curve () of the atomic mean distance £ of
the pround-state of model (60) with free ends versns the tensile force

p has the following properties,
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1) the curve £(M) is monotonous increasing and is continuous.

r

2) for each rational 2 - )
2a s

2(pu) is constant on a finite interval
6 if and only if the corresponding set ?; (described in the;rem 3) is
Ldiscontinuous.
In general, when the twist map is not integrable'gi is not contin-
uous for all rationals 2. As a result £(4) has a constant step at each
rational %;.

This curve is called a devil's staircase.(zs)

In this book, B.
Mandelbrot also shows other physical examples which involves such
pathological curves. On the basis of solid physical arguments, we ccn-

(2,3)

jectured that this curve £(p) is a complete devil's staircase

for 21 < g« 22 when for all irrational %5 in this interval, the set

gk are discontinuous. (By definition, a devil's staircase is called

(2)

completc when it is entirely composed of steps, or equivalently

when 2(u) has a zero derivative almost everywhere, or equivalently

when the Stieltjes measure 2(p) has no absolutely continuous part). We
also conjectured that it becomes incomplete (that is its derivative
becomes {inite on a finite measure set) when for some %; irrational
(which have finite imeasure) the soLs‘g; are represented by KAM tori.
(Let us mention that our theory would become rigorous, if a uniform

bound of the exponential interacltions between the discommensurations

could be obtained). Anyway, we can exhibit exact models (which

(1)

however have some pathologies) in which a complete devil's staircase
can be proved to exist and also explicitly calculated. As we explained
in Ref. 2, 3 and 16 a complete devil's staircase physically corresponds
to an irreversible but continuous transformation which is a quite unusual
behavior.  But, indeed similar features been observed in certain experi-

ments,
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It has also been experimentally observed stric ures which are
neither periodic or quasi-periodic (incommensuratc). Are tbey chaotic?
We generalized some aspects of this theory on the twist maps, to all
structures in any dimensions which are obtaiuned fcom the minimization
of an energy (i.e. a variational form). We introduced an abstract dyna-
mical system in which the usual time group is replaced by the transla-
tion group of the space in which the structure is imbedded. Using this
representation, we proved that there always exists a "minimal invariant
closed set" (by definition, it does not contain any smaller closed set
1nvariant under the action of the group) which correspond to a ground-
state. Translated in physical terms, this property implies the existence
of ground states with a new kind of long range order which could be
neither periodic nor incommensurate. We called this new kind of long
range order "weak periodicity". It also co.rcspond physically to a
"local order at all scales". 1In Ref. (16), we briefly describe this
theory but with some more details than here. Particularly, surprising
examples of "undecidable structures" obtained by tiling the plane are
piven, prove that such strange structures does exist in theoretical
models. Moreover they have no enlropy. Let us emphasize that our asser-
tirns are not in coptradiction with those of Ruelle(27) on the existence
of "turbulent grouad=state” although they scem to disagree. Indeed for
D Ruelle, "turbulent” means nonperiodic and "non-quasi-periodic™.  With
this definition, we agree with his assertion on the existence of turbu-
lent ground-state. However our definition of turbulent is more restric-
Ltive because we require that the structure has a finite entropy.

Although, we have no proof, we believe that except in exceptional

models with accidental degeneracy, the ground-state of most models
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obtained by minimizing a free energy has no entropy although it can be
neither periodic nor quasi-periodic. It is necessarily ”we?kly periodic"
(but this property is still quite physically imprecise). OE course, we
do not exclude defectible ground-states for which there may exist many
other metastable configurations. Although they have more energy than

the ground-state these configurations should play an important role for

(16)

the thermodynamical properties of the structure.
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Fipure Captions

Fig. 1, Map of the transformation T in (6) showing the trajectories
of the initial points M, plgtted on the figures for A = 0.15
Fig. l.a, A = 0.2 Fig. }.b and A = 0.25 Fig. 1. ¢, For each
initial M about 1000 points of t"e trajectory Ts(M1) 0 <n¢«
1000 have' been plotted. For A = (.15, most trajectories lie on
smooth closed curves (KAM tori) except the trajectory generated
by M. which maps a chaotic cloud of points in a narrow area.
For A = 0.2 this chaotic area becomes much wider while for
A = 0.25 this chaotic area fills most of the map except in
some isolated islands.

Fig. 2. Scheme of an advanced elementary discommensuration {u.} for
2/2a = 1/5. u_. is plotted as a function of i. The pﬁase
shift, 2a/5, odcurs in the region 14 < i < 15. Far from this
region the conf1gurat10n 1s commensurate,

Fig. 3. Scheme showing the initial points of the trajectories in the
twist map which 10Lresont the CommenburaLo ground-states for
£2/2a = 2/3: F T(F.) = T(F ), F T(F,). (These
points form a pOr]Odlg cy( e with porlgd 3). “The beginning
of the ditating shect of F., F, and F,_, are n]so represented
with only one intersection point one Wwith each other. The
arrow indicates the direction of the motion of a point of
the sheet by the twist map. Thus it indicates if the sheet
18 dilating ?{)(nntij(ting.( ;hc trajeclories generated by
Lho points h ) and h>77 correspond to A%Yin((ez ‘lemen-

5y dlu(nmm